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Abstract. The (2 + 1)-dimensional modified Kadomtsev—Petviashvili equation is decomposed
into systems of integrable ordinary differential equations resorting to the nonlinearization of Lax
pairs. Abel-Jacobi coordinates are introduced to straighten the flows, from which quasi-periodic
solutions of the modified Kadomtsev—Petviashvili equation are obtained in terms of Riemann theta
functions.

1. Introduction

There are several systematic approaches to obtain explicit solutions of the soliton equations,
such as the inverse scattering transformation, the algebro-geometric method, the polar
expansion method and others (see, e.g., [1-4] and references therein). Some interesting
explicit solutions have been found, the mostimportant among which are pure-soliton solutions,
quasi-periodic solutions and polar expansion solutions. Recently two interesting approaches,
nonlinearization of Lax pairs [5, 6] and constrained flow [7, 8], have been developed to engender
new finite-dimensional completely integrable systems from known soliton hierarchies. Very
recently, the nonlinearization approach has been applied successfully to obtaining quasi-
periodic solutions of soliton equations [9, 10] and generalized to the investigation of soliton
equations in two spatial and one temporal ((2+ 1)) dimensions.

Consider th&2 + 1)-dimensional modified Kadomtsev—Petviashvili (mKP) equation [11]

4G = Guxx — 6‘]251x — 6q; 8;IQy + 38;151yy (l-l)
which is the compatibility condition of the following linear system [11, 12]:

Uy = Uxx — 2qUy

) (1.2)
Uy = Uxxx — 3quxx + %(6]2 —qx — ax 161y)ux
or
Vy = —UVyy — 29Uy
y XX qUx . ) (13)
Uy = Uppx + 3qvxx + 5(61 tqx — ax Q}')vx~
If we impose the constraint as follows:
q = uv (1.4)
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then (1.2) and (1.3) are nonlinearized into the generalized nonlineai@ober equation with
derivative coupling [13]

Uy = Uy — 2UVUy Vy = —Upy — 2UVVy (1.5)

and its higher-order equation

Uy = Uy — 3UVUL, + uiv — szzux)

Uy = Ugyyx + 3Uvv,, + viu +u?v?v,).
Therefore, ifu is a solution of (1.5) and (1.6, determined by (1.4) is a solution of the mKP
equation (1.1). This fact could also be verified by direct calculations.

In this paper, based on the above study we would like to develop further the methods
in [14-16] to construct quasi-periodic solutions of the mKP equation (1.1). We first derive
the soliton hierarchy associated with (1.5) and (1.6). Secondly, equations (1.5) and (1.6) are
decomposed into systems of integrable ordinary differential equations. Finally, a hyperelliptic
Riemann surface of genug and Abel-Jacobi coordinates are introduced to straighten the
associated flows, from which the quasi-periodic solutions of the mKP equation (1.1) are
expressed explicitly by the Riemann theta functions.

(1.6)

2. The hierarchy

To derive the hierarchy and its stationary hierarchy associated with equations (1.5) and (1.6),
we introduce the Lenard gradient sequefige—1 < j € Z by the recursion relation

KSji-1=JS;  Siluw=o=0  Si=(vud)  j>0 2.2)
with two operatorgd = 9/9x)
0 d+uv O 0 1 —2u
K= 0—uv 0 0 J = -1 0 2
—u v d —u v 0

It is easy to see that (2.1) implies the relation
(N @ 4 ¢® _
—uS;” +vS7+857=0 (2.2)
ands; is uniquely determined by the recursion relation (2.1). Here the condifi@n,—o = 0

is used only in (2.1) to select constants of integration to be zero. A direct calculation gives
from the recursion relation (2.1) that

—v, — uv? Vex — V2, + 3uvv, + u?vd
So = u, —u?v S1= | wuer +uPv, — 3uvu, +u0® |, (2.3)
—uv UV, —uxv+u2v2
Consider the spectral problem
1
S(A — uv) Au
=U U=| 2 2.4
o =Ugp ( ; 10— w) (2.4)
and the auxiliary problem
(m) (m)
" Vi1 Vi
Voro =V

where

m m m
(m) __ 3) +1—j (m) __ @3] +1—j (m) __ (€3] —J
Vi) = a + ) S Vg =3 8@ i vy =3 s
j=0 =0 j=0
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Then the compatibility condition between (2.4) and (2.5) yields the zero-curvature equation
U,, — V™ +[U, v™] = 0, which is equivalent to the following soliton equations:

(uv), = —2ay x
u;, = S,(nzil,x + qun(fll + 2ua,, (2.6)
v, = Siqlil,x - qu,;lll — 2va,.
Equations (2.6) imply
an = —307vdS\?  +udSY +uv (WS —usy )
=207 WSy —vS?) = 152 (2.7)
wheredd ! = 9719 = 1. By using (2.7) and (2.1), equations (2.6) can be written as
(s, v,)" = Xon m>0 (2.8)

and

552) - ”55'3) —udtu 1+ud v Sﬁl)
X; = Gy = ( 1+~ —voly ) @ |
J J J
The first two nontrivial equations in the hierarchy (2.8) with= y, = ¢ are exactly
equations (1.5) and (1.6).
Assume that (2.4) and (2.5) have two basic solutigns (v1, ¥»)” andg = (¢1, ¢2)7.
We introduce a matri® of three functionsf, g, h by

W:%(¢¢T+¢¢T)0:( ;: —gf> g:(g _01 ) (2.9)

A direct calculation shows that
W, =[U, W] w, =[vV™, W] (2.10)

m

which implies that the function dé¥ is a constant independent.ofandz,,. Equation (2.10)
can be written as

fe = Auh —vg gr = —uv)g — 2:uf hy =2vf — (A —uv)h (2.11)
and
(2.12)
Now we suppose that the functioifsg andh are finite-order polynomials ik:
N ) N ) N )
f=Y fimN g=Y g h=Y hj AN (2.13)
j=0 =0 =0
Substituting (2.13) into (2.11) yields
KG; 1=JG; JG_1=0 (2.14)
KGy-1=0 Gj=(hj. g )" (2.15)
Itis easy to see that (2.14) implies
—uhj+vg;+ fix = 0 (2.16)

and the equatiod G_; = 0 has the general solution
G,]_ = O[oS_l (217)
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whereog is an integral constant. Therefore, if we take (2.17) as a starting pointGthean be
determined recursively by the relation (2.14). In fact, noticingket {¢S_1|Vc} and acting
with the operatorJ 1K )**1 upon (2.17), we obtain from (2.14) and (2.1) that

k+1

Ge=) ;S ~1<k<N-1 (2.18)
j=0
whereqy, . .., ag+1 are integral constants. Substituting (2.18) into the first expression of (2.15)

yields a certain stationary evolution equation,

aoXy+a1Xy 1+ +ayXo=0 (2.19)

}?._ 0 d0+uv SJ(];)]-
T\ —uv 0 552_)1 '

This means that expressions (2.13) are existent.

where

3. Integrable ordinary differential equations

Inthis section, equations (1.5) and (1.6) will be decomposed into systems of integrable ordinary
differential equations. Without any loss of generality we carxget 1, since changing _;
simple results in multiplyingf, g andh by a constant. From (2.3), (2.1) and (2.18), we have

1
fri=5 g1=u hoi=v
fo= +1 = 20+ ho = 2+
Jo = —uv 50[1 80 =Uy —UVTUHU 0= —Uy —Uv o1V
f1=uvy —uxv+u2v2—a1uv+%oz2 (3.2)

24 oy (U, — uzv) + oou

81 = Uy + uzvx — 3uvu, + uv
I = vey — v2u, + 3uvv, + 1?0 — aq (v, + uv?) + azv.

By using (2.13), we writeg and/ as two finite products, they take the form

N N
g=mu[Jo—pm)  h=v[]-w) (3.2)
i=1 i=1
which imply, by comparing the coefficients of the same poweifdhat
N N
go = _”Zﬂj ho = —vaj (3.3)
j=1 j=1
g1=uZMiuj hlZUZViVj~ (3.4)
i<j i<j

Thus from (3.1), (3.3), (3.4) and (1.5), after a simple calculation, we obtain

N
8|nu—uv+o¢1=—2,u_,~

j=1

(3.5)

N
8|nv+uv—o¢1=2v‘,~

j=1
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and
N
dylnu+uv@Inv—2alnu+uv) :Zuiuj +a12uj +af—a2
i<j j=1
j J i (3.6)
dyInv—wuv@Inv—09aInu +uv) = —Zvivj —alzvj —a%+oc2
i<j j=1
which imply
N
dlnuv = Z(vj — 1)
=1
N (3.7)
Ay Inuv = Z(Mfﬂj —vvj) tag Z(Mj — ;).
i<j =1

Resorting to (1.5), (3.5) and the first expression of (3.7), we have

M)CX vX.X
By Inuy = 2% —
u v

= 92In 2+ @INu)? — @INv)? — 2uvd Inuv
v

N 2 N 2 N N
= (Xm) - (Xw) —aXw e w Y- @)
=1 =1 =1

j=1

— 2uvdInuv

which together with (1.4), the second expression of (3.7), gives

N EN (vz—/ﬁ)+28§1.v (i +v;)
=1 =1

q——%a1+%§ (wj+vj)+ == - J J
=1 4% i (vj —uj)

(3.9)

in view of the equality
N 2 N
2> iy = (Zuj) - > U
i<j j=1 j=1
Consider the function dé¥, which is a(2N + 2)th-order polynomial im. with constant
coefficients of thec-flow ands,,-flow,

2N+2
—detW= f+gh =3[ —2x) =FR%) Aon+2 = O. (3.10)
j=1
Substituting (2.13) into (3.10) and comparing the coefficients?dt! anda?" yields
2N+2

2fafotgaha=—3 ) A
=

2fafit fE+g ahotgoh1=3% Y ik

i<j
which together with (3.1) lead to
2N+2 2N+2 2
ar=-3Y 4 azz%zlxixj—§<2xj> : (3.11)
j=1 i<j j=1
From (3.10), we see that

Fhzw = 3V R () Fhzy, = 3V RO). (3.12)
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Noticing (3.2) and (2.11), we obtain

N
8xlampy = — Uk Mix 1_[ (ke — i) = —2upir fla=p,
e (3.13)
helimy, = = [] e —v) =2vflizy,  1<Kk<N
i=1,i#k
which together with (3.12) gives
Wiz = VR Vix I/ (Y 1<k<N. (3.14)

N N
ni:1,i¢k(ﬂk — 1) I_L:L,#(Vk =)

From (2.5), (3.5) and (3.4), we have

N N
Vi3 oy = s <Mk - Z Wi — a1> Vo limue = v(Vk - Z v; — a1> (3.15)

j=1 j=1
) N N
Vi e = uuk[uf — Mk Zu; + Zmu; +a1<Zuj - uk) +af - 062:|
— et —
’ ’<’ ! (3.16)
2) 2 z = 2
V2(1 la=y, = v[vk — D Zvj + Zv,-vj +a1<z v — vk) +ai — ()[2].
j=1 i<j j=1
In a way similar to the calculation of (3.14), we arrive at
 VRuu VS iy,
Mkt, = N
Mk Hizl,i;ek(,uk - i)
1<k<N,1<m<2. (3.17)
o VRO
kty — —

N
[liss i (0 — i)

Therefore, if the(2N + 2) distinct parametersy, ..., Aoy+2(Aoy+2 = 0) are given, and let
ui(x, t,) andvg (x, t,,) be distinct solutions of ordinary differential equations (3.14) and (3.17),
then (u, v) determined by (3.5) and (3.6) is a solution of equation (1.5) wite= 1 or the
higher-order equation (1.6) with = 2. This means that by (3.9) is a solution of the mKP
equation (1.1).

4. Quasi-periodic solutions

In this section, we shall give the quasi-periodic solutions of the mKP equation (1.1). To this
end we first introduce the Riemann surfdtef the hyperelliptic curve? = R(A), R(A) =
]’[f';’{z(x — 1;), of genusN. OnT there are two infinite pointso; andoo,, which are not
branch points of". EquipT" with a canonical basis of cycless, ..., ay; b1, ..., by, which

are independent and have intersection numbers as follows:

aioa; =0 biob; =0 ajob; = 4.
For the present, we will choose as our basis the following set:
_A7tda
7T URD

I1<ILKN
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which areN linearly independent homomorphic differentialsionBy using the cycles; and
b;, the period matriced andB can be constructed from

AijZ/ w; Bij:[ wj.
aj bj

It is possible to show that the matricdsand B are invertible [17,18]. Now we define the
matricesC andt by C = A1, 7 = A~'B. The matrixr can be shown to be symmetric
(r;j = tj;) and it has a positive-definite imaginary part @m- 0). If we normalizew; into
the new basi®;,

N
w; = E Cﬂw1 1
=1

then we have

N N
/a)jZZlCﬂ/wl:lZlCﬂAl,'ZSﬁ
a; = aj =

f wj = Tj;.
bi

Now we introduce Abel-Jacobi coordinates as follows:

N
~.
N
=

and

@ Z Mk (x, vt) ZZ ey =1,
Sy = / 1/ 1<j<N (4.1)
=e ", VRO)
N Vk(quqf) N N ve 3 1=1 -
PP (x, y.1) = Z/ ZZ Vo 1<j<N (4.2)
k=1"Y Po =1 I= po

wherepg is chosen a base point @h From the first expression of (3.14), we obtain

@ Lk Mi oy
p; ZZCJ’W ZZ )

-1 k=1 1;&]((/14(
which implies
3oV =Cjy = 1<j<N (4.3)
with the help of the following equality:

N -1
ZN“k—zam 1<I<N. (4.4)
k=1 H,‘,sk(l/«k — M)

In a similar way, we obtain from (3.16) that

a0 = QY apt = QP 1<j<N (4.5)
wo =—P g =-ab 9P =-F  1<j<N (4.6)
where
QY =Cjy1— € QP = Cjy_o—onCiyo1+ (@ — ) C;
j,N—-1 1% N jsN=-2 1C i N-1 1 2)LjN-

On the basis of these results we obtain the following:
,051) (x,y,1) = Qﬁo)x + Qﬁl)y + QEZ)I + J/(l)

1<Jj<N (4.7)
p;Z)(-xa Vs t) = _Q§O)x - Qil)y - Q(Z)t * 7/](2) l < J < N

(4.8)
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(m),

wherey s (im = 1, 2) are constants,

(1) 1. (0,0, 0) @ N ,(0,0,0)
N o
Po P

k=1 po

Let 7 be the Iattlce set generated by theV 2vectors {5;, r;}, where §; =
©0,...,0,1,0,...,0)" andt; = 7§;. The complex torusy = C" /T is called the Jacobian
Q\/-/ b\,-/

j—1
variety ofI". An Abel mapA : Div(l") — J is defined as

P
A(p):/ w o= (01,...,08)"
p

0
with the natural linear extension to the factor group @iy

A(Z nkPk) = Z neA(pe).

Consider two special d|V|sor‘§:J o0 m=1,2) and

(m)

(Zp(m) ZA(p(m) pr" w = p™
po

k=1

with p(l) (ke £ () andp = (v, ¢ (1)), whose components are

Z/ w; = p{" 1<j<N m=12

k=1"Y Po
According to the Riemann theorem [17,18], there exists a constant vaé&ter —
M., My")T e CN such that the function

F™}) =0(A(p) —p™ = M™)  m=12 (4.9)
has exactlyN zeros atuy, ..., uy (form = 1) orv, ..., vy (for m = 2), wherep = (1, ¢)

andf is the Riemann theta function defined by

0ElT) = Y expirv/—L(rz, 2) + 21 v/=1(£. 2))

zeZN

inwhichg = (&,..., 80" € CY, (5,2) = Y11, &2
To make the function single valued, the surfécis cut along alky, b, to form a simple
connected region, whose boundary is denotegt biotice the fact that the integrals [17, 18]

AdIn F™ () = I.(D)

1
2r/—-1J,

are constants independent@f’ with

N
L(T) = Z/ M.
j=1v4a;

By the residue theorem, we have

N 2
I(T) = Z uk+ Z ReS_o A dIn FO (1)

=1 s=1 (4.10)

N 2
L(D) =) vf+) Res_x, A*dINFA ).
=1 s=1
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Here we need only compute the residues in (4.10) fer1, 2. In a way similar to calculations
in [9, 14, 15], we arrive at

RE€S—co, AdINF™ (1) = (=1)**"3Ino™

(4.11)
ReS_w, A2dINF™ (1) = (=1)**"3, N6 +3%Ing™ 1<m<2,1<s<
where
Qs(l) — Q(Q(O)x + Q(l)y +Q@f + T(S)) QS(Z) — 9(—9(0))6 _ Q(l)y — 0@+ A(S))
with
Q(i) — (Q(i)’ o, Q(i))T T(S) (T(S) , 'Y“(S))T A(S) = (Ag_s), N Agf,))T
Po Po
TO =y Oy ® s / o, AD =@ 4 Y@ +/ o,
00 OOy
0<i<2 1<j<N.
Equations (4.10) and (4.11) implies
e
Zm(x 70 = 1D+ G
N 0(2) (4.12)
D v,y )= L) +aln 4
=1 9
N o
D uk(x,y. 1) = L) + 3, In W — 32InoPoY
=t ! (4.13)
o 6,? 2,2
> v, y. 1) = L(T) + 9, In L > —32Ino?0f .

QZ

—
Il
AN

Substituting (4.12) and (4.13) into (3.9), we obtain the quasi-periodic solutions of the
mKP equation (1.1)

(1) os @

1
q(x,y, t) = 2(051+11) + = a |n W
LI /000 + 02 n(0" %0 0 05”)?)

431n(61"6? 167657

(4.14)
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